Research Overview

Prof. Heather Zheng at the white board

Computer Engineering Research at UCSB

CE research lies not only at the interface of computer science and electrical engineering, but increasingly ties computing together with biology, medicine, chemistry, physics, mechanical engineering, and even environmental engineering.

Our research is ideally positioned to help solve societal problems through the construction of practical systems composed of emerging technologies. We live in a time of both opportunity and crisis. Rising carbon emissions and energy costs are a global problem. Aging populations increasingly strain healthcare resources. Computing technologies are at the heart of many potential solutions to these problems. Emerging technologies in nanoscale and bio-compatible materials hold the promise to increase energy-efficiency and revolutionize healthcare. We also see opportunities in massive information gathering and large-scale computing resources to exploit that information.

We must also address increasing challenges to continued scaling of conventional silicon and to maintaining the dramatic performance growth of past computing systems.

CE Areas of Research

  • Bioinspired Computing
  • Circuit and System Design
  • Computer Architecture
  • Electronic Design Automation & Testing
  • Emerging Technologies for Computing

  • Energy-efficient Computing
  • Nanotechnology
  • Networking
  • Operating and Distributed Systems
  • Software and Language

Faculty Lab Spotlight


Scalable Energy-efficient Architecture Lab (SEALab)
Professor Yuan Xie


sealab logo

SEALab aims at leveraging emerging technologies (with emphasize on 3D integration and emerging nonvolatile memory) for edge-cutting applications (e.g., machine learning and bioinformatics).

SEALab distinguishes itself by strong cross-layer researches going from device to application, and works on circuit design, EDA tools, and computer architecture at the same time. Recent research highlights are as follows:

sealab 3d design

3D Design & Design Automation
The architecture we proposed in 2012 turns to the world-first 3D GPU on the market (AMD Fury X). Our recent researches including cost analysis for 2.5D/3D integration, heterogonous integration, and 3D based hardware security study.


sealab youtube video

Modeling, Architecture and Application for Emerging Nonvolatile Memory
We help the community to understand NVM’s pros and cons for better utilizing them to improve the future computing systems, e.g., IoT, GPGPU, NoC, and Data Center. We are also interested in utilizing NVM’s nonvolatility feature for normally-off computing, check-pointing, and persistent memory.

Energy-efficient Hardware for Machine Learning and Neuromorphic Computing
We explore optimizing machine learning applications on parallel and heterogonous architecture as well as reconfigurable fabric. We also leverage emerging technologies for machine learning and bio-inspired applications, e.g., 3D stacked high bandwidth memory, low-power NVM.

Faculty Research News

Prof. Tim Sherwood's Computer Architecture & Embedded Systems Lab recipient of Cisco Gift

photo of kaustav banerjee The gift supports research entitled, "Formally Analyzing Software Security on Naked Embedded Hardware." It explores the extent to which an analysis of security properties can be made to “cut-through” the many layers of abstraction in a typical system.

Professor Ben Zhao awarded Distinguished Scientist designation by ACM

photo of ben zhaoZhao was recently selected as a 2015 Distinguished Member by the Association for Computing Machinery. The designation is awarded to computing professionals whose significant accomplishments and advances in computing will yield real world impact. 

Faculty Research Profile: Professor Tevfik Bultan

photo of Tevfik Bultan
  • Ph.D.: University of Maryland
  • Lab / Group: Verfication Lab (Vlab)
  • Research Areas: Software Verification, Program Analysis, Software Engineering, Computer Security

Tell Us About Your Research: My research focuses on automated verification techniques and their application to software. As computer systems become more pervasive, their dependability becomes increasingly important. As a result, there is an ongoing shift in focus, both in academia and industry, from performance to dependability. The size and complexity of the software systems nowadays inevitably lead to errors during both design and implementation phases. The goal of our research at VLab is to develop verification techniques that will help developers in identifying errors in software. Recently, we have developed a novel approach for finding data model bugs in software applications written using the Ruby-on-Rails framework, where programming errors could lead to loss of data or unauthorized access to data — see research full description

(More about Professor Bultan and other faculty's research...)

Research Initiative – Li-C. Wang

Main areas of research:

photo of li wang
  • Big Data analytics for the semiconductor chip design
    industry
  • Data mining in design automation and test
  • Functional verification
  • Test data mining

Research lab: Microprocessor Test and Validation


Read the article in the Fall 2015 ECE Current